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Example 5.5 (Beam Equation). The Beam Equation provides a model for the load
carrying and deflection properties of beams, and is given by

∂2u

∂t2
+ c2

∂4u

∂x4
= 0.

. . . but you won’t see them in this course. You’ll have to wait until Maths for Engineers 3
(MATH6503) for that!

5.2 First order separable ODEs

An ODE
dy

dx
= F (x, y) is separable if we can write F (x, y) = f(x)g(y) for some functions

f(x), g(y).

Example 5.6.
dy

dx
= y IS separable,

dy

dx
= x2 − y2 ISNOT.

Example 5.7. Find the general solution to the ODE

9y
dy

dx
+ 4x = 0.

“Separating the variables”, we have

9ydy = −4xdx ⇐⇒

9

∫
ydy = −4

∫
xdx

9

2
y2 = −4

2
x2 + C,

i.e. the general solution is

x2

9
+

y2

4
= K, (K = C/36)

which describes a ‘family’ of ellipses.

We can check our solution by differentiating:

2

9
x+

2

4
yy

′
= 0

i.e
9yy

′
+ 4x = 0.

Example 5.8. Find the general solution to

dy

dx
=

y + 1

x+ 1
.
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⇒
∫

1

y + 1
dy =

∫
1

x+ 1
dx

⇒ ln |y + 1| = ln |x+ 1|+ C.

Use log
(a
b

)
= log a− log b:

ln

∣∣∣∣
y + 1

x+ 1

∣∣∣∣ = C,

or
y + 1

x+ 1
= eC = K.

Again we can easily check this using differentiation.

Example 5.9. Solve the ODE
dy

dx
= 1 + y2

Separating variables:
∫

dy

1 + y2
=

∫
dx

⇒ arctan y = x+ C

⇒ y = tan (x+ C).

Once again, this is easily checked by differentiation.

Example 5.10 (2007 Exam Question). Solve

dy

dx
− y(y + 1)

x(x− 1)
= 0

finding y explicitly, i.e y = f(x).

Solution: This equation is separable, thus separating the variables and integrating gives

dy

dx
=

y(y + 1)

x(x− 1)∫
dy

y(y + 1)
=

∫
dx

x(x− 1)
.

To solve the integrals, use partial fractions:
∫ [

1

y
− 1

y + 1

]
dy =

∫ [
−1

x
+

1

x− 1

]
dx

ln y − ln (y + 1) = − lnx+ ln (x− 1) + C

ln

(
y

y + 1

)
= ln

(
x− 1

x

)
+ C

y + 1

y
= e−C x

x− 1
.

Let K = eC . Then

y = (y + 1)

(
x− 1

Kx

)

y

[
1−

(
x− 1

Kx

)]
=

(
x− 1

Kx

)

y(Kx− x+ 1) = x− 1.



CHAPTER 5. DIFFERENTIAL EQUATIONS 55

∴ y =
x− 1

Kx− x+ 1

is the explicit solution.

Example 5.11 (2010 Exam Question). Solve

(y + x2y)
dy

dx
= 1.

Solution:

y(1 + x2)
dy

dx
= 1

∫
y dy =

∫
dx

x2 + 1

y2

2
= arctanx+ C

i.e. the solution is y = ±
√
2 arctanx+ 2C.

5.3 First order linear ODEs

Aside: Exact types An exact type is where the LHS of the differential equation is the
exact derivative of the product.

Example 5.12.

x
dy

dx
+ y = ex

⇒ d

dx
(xy) = ex

⇒ xy = ex + C.

Example 5.13.

exey
dy

dx
+ exey = e2x

⇒ d

dx
(exey) = e2x

⇒ exey =
1

2
e2x + C.

I recommend that you bear this in mind as we proceed. . .

First order linear ODEs are equations that may be written in the form:

dy

dx
+ P (x)y = Q(x). (5.2)

Example 5.14.

dy

dx
+ y cotx = cosecx. [P (x) = cotx, Q(x) = cosecx]
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Example 5.15.

tanx
dy

dx
+ y = ex tanx

⇒ dy

dx
+ cotx y = ex. [P (x) = cotx, Q(x) = ex]

In general, Equation (5.2) is NOT exact.

Big question: Can we multiply the equation by a function of x which will make it
exact?

Let’s suppose we can, and call this function I(x); the integrating factor (IF). Then multiply
both sides of (5.2) by I:

I
dy

dx
+ IPy

︸ ︷︷ ︸
Exact type

= IQ.

Compare the LHS with
d
dx (Iy)︷ ︸︸ ︷

I
dy

dx
+

dI

dx
y,

Hence we require

IP ✁y =
dI

dx ✁y

⇒ dI

dx
= IP

⇒
∫

dI

I
=

∫
P dx

⇒ ln I =

∫
P dx [No need for integration constants!]

⇒ ln I = e
∫
P dx,

and this is the IF. We will substitute this into (5.2):

dy

dx
+ P (x)y = Q(x).

Multiply by I:

e
∫
P dx dy

dx
+ e

∫
P dxPy = e

∫
P dxQ

⇒ d

dx
(ye

∫
P dx) = e

∫
P dxQ

⇒ yI =

∫
e
∫
P dxQ dx.

This is the form we end up with.

I will not ask you to go through this derivation in the exam. However, you will need to
know how to apply it.
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Example 5.16. Solve
dy

dx
+ 2y = e−x.

We require the IF:
I = e

∫
P dx = e

∫
2 dx = e2x.

Then

e2x
dy

dx
+ 2e2xy = e2xe−x

⇒ d

dx
(ye2x) = ex

⇒ ye2x = ex + C,

or
y = e−x + Ce−2x.

Example 5.17. Solve

cosx
dy

dx
+ y sinx =

1

2
sin 2x.

Get it into the right form first!

⇒ dy

dx
+ y tanx =

sin 2x

2 cosx
=

✁2 sinx✘✘✘cosx

✁2✘✘✘cosx

⇒ dy

dx
+ y tanx = sinx, (5.3)

so P (x) = tanx. Now seek the IF:

I = e
∫
P dx = e

∫
tanx dx = e− ln(cosx) =

1

eln(cosx)
=

1

cosx
.

A VERY common error: e− ln(cosx) = cosx.

Multiply (5.3) throughout by I to give

1

cosx

dy

dx
+

tanx

cosx
y = tanx,

i.e.

d

dx

( y

cosx

)
= tanx

⇒ y

cosx
=

∫
tanx dx+ C = − ln(cosx) + C.

Therefore the general solution is

y = C cosx− cosx ln(cosx).

Example 5.18. Solve

x
dy

dx
+ = x2 + 3y.

Get it in the right form first. . .
dy

dx
− 3

x
y = x. (5.4)
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Find the integrating factor

I(x) = e
∫
− 3

x dx = e−3 lnx = eln(x
−3) = x−3,

Now multiply both sides of (5.4) by the integrating factor to make the LHS an exact type:

x−3 dy

dx
− 3x−4y = x−2 ∂

∂x

(
x−3y

)
= x−2,

and integrate both sides of the equation to gain

x−3y = −x−1 + C

y = x3
(
C − x−1

)

y = x2(Cx− 1).

5.4 Initial Value Problems

All the solutions we obtained so far contain an annoying constant of integration C. When
engineers work with ODEs, they are interested in a particular solution satisfying the given
initial condition.

An ODE together with an initial condition (IC) is called an initial value problem (IVP).
In other words:

ODE + IC = IVP

We need only two steps to solve an IVP:

1 ODE: Find the general solution, containing an arbitrary constant.

2 IC: Apply the condition to determine the arbitrary constant. Usually, the condition
is given as

y(x0) = y0,

which tells us that when x = x0, y = y0.

Example 5.19. Solve the IVP

2
dy

dx
− 4xy = 2x, y(0) = 0.

Start by rewriting in the form
dy

dx
− 2xy = x,

which is a first order linear equation, so we calculate the IF:

I = e
∫
−2x dx = e−x2

.

∴ dy

dx
e−x2 − 2xe−x2

y = xe−x2
.
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Hence

d

dx

(
ye−x2

)
= xe−x2

⇒ ye−x2
=

∫
xe−x2

dx,

⇒ ye−x2
= −1

2
e−x2

+ C

⇒ y = −1

2
+ Cex

2
.

Now apply the IC y(0) = 0. This gives

0 = −1

2
+ C ⇒ C =

1

2
,

and so the solution is

y =
1

2

(
ex

2 − 1
)
.

Example 5.20. Solve the IVP

x
dy

dx
+ 2y = 4x2, y(1) = 2.

Get the equation in the right form first!

dy

dx
+

2

x
y = 4x.

Then the IF is:

I = e
∫ 2

xdx = e2 lnx = elnx2
= x2.

⇒ x2
dy

dx
+ 2xy = 4x3

⇒ d

dx

(
x2y
)
= 4x3

⇒ x2y = x4 + C

⇒ y = x2 + Cx−2.

Apply the condition y(1) = 2:

y(1) = 1 + C = 2 ⇒ C = 1.

So the solution is

y = x2 +
1

x2
.

Example 5.21 (Logistic Equation). Suppose the rate of change of x is proportional to:

rx (1− x) ,

where r > 0 is constant. Show that if initially x = x0 (at t = 0) and 0 < x0 < 1, then
lim
t→∞

x = 1.

First, we set up the ODE:
dx

dt
= rx (1− x) ,
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which is the logistic equation. This ODE has applications in many fields of study such as
ecology, psychology, chemistry and even politics!

The logistic equation can be tackled by separating variables. . .
∫

dx

x (1− x)
= r

∫
dt

∫ [
1

x
+

1

1− x

]
dx = rt+ C

ln |x|− ln |1− x| = rt+ C

ln | x

1− x
| = rt+ C

x

1− x
= ert+C = erteC ,

and let G = eC . We then make x the subject. . .

x = (1− x)Gert

x = Gert − xGert

x(1 +Gert) = Gert,

which leads to

x =
Gert

1 +Gert
.

Next, find G using the initial condition:

x0 =
1

1
G + 1

, ⇒ 1

G
=

1

x0
− 1,

and therefore

x(t) =
1

1 +
(

1
x0

− 1
)e−rt =

x0
x0 + (1− x0)e−rt

,

the so-called logistic function. Finally, we note that as t → ∞, x(t) → ✚✚x0

✚✚x0
= 1, as intended.

Figure 5.3: A plot depicting the logistic curve. Here, x0 = 0.01 and r = 0.2.


